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Introduction

▪Recent evidence that dynamics of the hydrologic 
cycle of river basins have been changing due to 
human intervention and climate variability/change 

▪Number of articles arguing that the hydrological 
processes have become nonstationary

▪While a lot of controversy exists, significant 
developments on methods have been made 
(Olsen et al. 1998; Wigley 2009; many others) 

▪ This presentation will provide information on the 
potential approaches that could be used for 
hydrologic designs considering nonstationarity and 
discuss challenges ahead.



Example: Annual Maximum Floods,  
Assunpink Creek, NJ



Example: Extreme (and Mean) Sea Levels



Example: Sunny Day Flooding in South 
Florida (2015)

Miami Beach

Big Pine Key

Key Largo

Hollywood SFWMD-S13 Pompano Beach

Boca Delray

Lantana

Credits: Rhonda Haag, Jennifer Jurado, Natalie Schneider



Example:  Depth-Duration-Frequency of 
extreme precipitation (NOAA Atlas 14)

Data suggested by Cheng and AghaKouchak (2014)

Assuming stationarity



Nonstationarity Debate

▪ “Nature’s Style: Naturally Trendy”, Cohn and Lins (2005)

▪ “Stationarity is Dead” (Milly et al, 2008)

▪ “Stationarity: Wanted Dead or Alive?” (Lins & Cohn, 2011)

▪ “Comments on the Announced Death of Stationarity”
(Matalas, 2012)

▪ “Negligent Killing of Stationary”
(Koutsoyiannis and Montanari, 2014)

▪ “Stationarity is Immortal” (Montanari & Koutsoyiannis, 2014)



Probabilistic Modeling of Annual 
Extremes under Nonstationarity

▪ Two approaches: Block Maxima & Peaks  
Over Threshold ( Coles, 2001)

▪Most work uses GEV / GPD with parameters 
linked to covariates

▪Software: R packages (extRemes, gamlss)

▪ “Return Period” & Risk based on

• Expected Waiting Time (EWT)

• Expected Number of Events (ENT)

• Design Life Level (DLL)

• Average Annual Risk (AAR)



A brief review  – Stationary Case
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Return Period as “Expected Waiting 
Time”

X = Waiting Time for the first occurrence of a 
“flood”  (a random variable)

f(x) = P(X=x) = (1-p)x-1p x=1,2..

This is the well known Geometric Distribution for 
Bernoulli Trials  to get one success

Expected Value of X:

T = Expected Waiting Time for the first occurrence 
of the exceedance!

       𝑬 𝑿 =  𝒙𝒇 𝒙 =  𝒙 𝟏 − 𝒑 𝒙−𝟏𝒑 =
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Nonstationarity – A New Paradigm
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Sea Level Rise Case
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Probability Distribution of Waiting Time 
(Salas & Obeysekera, 2014 and others)

▪Probability distribution of waiting time

▪Non-homogeneous geometric (Mandelbaum et al.2007)

▪CDF
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“Return Period” Under Nonstationary

▪Return Period is defined as the “expected 
time for the first exceedance (waiting time)”

▪Coley (2013) provides a nice simplification:

Note: Since pt is a function Zq0 (initial design or p0), this can also 
be used to find Zq0 for a given T
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Risk and Reliability Under Nonstationary

▪Risk

▪Reliability:  
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Specific Models

▪ For GEV:
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𝒑𝒕 = 𝟏 − 𝒆𝒙𝒑  −  𝟏 + 𝝃  
𝒛𝒒𝟎

− 𝝁(𝒕)

𝝈(𝒕)
  

−𝟏/𝝃

  

𝝁 𝒕 = 𝜷𝟎 + 𝜷𝟏𝒕;  𝝈 𝒕 = 𝝈; 𝝃 𝒕 = 𝝃 

𝝁 𝒕 = 𝜷𝟎 + 𝜷𝟏𝒕 + 𝜷𝟐𝒕
𝟐;  𝝈 𝒕 = 𝝈; 𝝃 𝒕 = 𝝃 

𝝁 𝒕 = 𝜷𝟎 + 𝜷𝟏𝑵𝑰𝑵𝑶𝟑(𝒕);  𝝈 𝒕 = 𝝈; 𝝃 𝒕 = 𝝃 

𝝁 𝒕 = 𝜷𝟎 + 𝜷𝟏. 𝑴𝑺𝑳(𝒕);  𝝈 𝒕 = 𝝈; 𝝃 𝒕 = 𝝃 

Modeling Non-stationarity



Variation of the non-stationary return period T as a function of the 

initial return period T0 (referred to as stationary T in the horizontal) 

for Little Sugar Creek (Salas and Obeysekera, 2014) 

Return Period Curve (Floods)

Should we call this:

• Nonstationary 

return period 

(NRP)

• Nonstationary 

Expected Waiting 

Time (NEWT)

• 1/Percent Chance 

Exceedance 

(Design Return Period)



Non-stationary risk as a function of n for Little Sugar Creek 

assuming Gumbel models & initial designs T0 = 25, 50, & 100 years.  

Risk for the stationary condition (dashed lines) and risk for non-

stationary conditions (solid lines) (Salas and Obeysekera, 2013). 

Risk: Stationary versus Nonstationary

Stationary

Nonstationary



Return Period Curve (Precipitation)
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Sea Level Trends in Key West, Florida
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Confidence Intervals of Design Quantiles 
Nonstationary Case (Obeysekera & Salas 2015)
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Frequency of Flooding under Non-
Stationarity (Obeysekera & Salas 2016)

▪ Frequency of flooding increases with time

▪Number of floods, NT, has Poisson Binomial 
Distribution (Hong 2013) with the following 
properties:

𝑃𝑀𝐹:  
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Frequency of Flooding: Sea Level 
extremes at Sewell Point
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Hydrologic Design Problem

t0 tn

Observations

Design Life, n years

Exceedance 

Probability,  pt

Time ,t

Number of Events, m

T = Design Return Period

R = Risk of one or more events

zq0 = Design Return Level (quantile)
X = Waiting Time, or 

First Arrival Time of an 

event exceeding design 

starting from t0
(X=1,2,3,…..)

Criteria: EWT, ENE, DLL, AAR



Hydrologic Design considering 
Nonstationarity
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DLL: What level 

should we 

design to 

maintain a 

specified risk 

(e.g. 5%)

ENE: What level should we design for if 

we can tolerate, say m events over the life

AAR: Design 

for average pt

EWT



Design methods under stationarity (Salas 
, Obeysekera & Vogel, 2017)

Design 

Method

Primary 

Parameters

Return Period 

T

Design Quantile 

zq (Return Level) 

Risk of 

Failure R

Over

Design Life n

Probability 

Distributio

n

EWT(1)

T T (specified) Solve for zq in R = 1-(1-1/T)n Geometric

ENE = 1
n

n p = 1 ,  p = 1/n

T = n
Solve for zq in R = 1-(1-1/n)n Binomial

ENE = m

(m > 1)
n, m

n p = m ,  p = m/n

T = n/m
Solve for zq in R = 1-(1-m/n)n Binomial

DLL
R, n

p = 1 – (1-R)1/n

T = 1/p Solve for zq in R (specified)

Geometric 

or

Binomial

(1)Note that specifying average waiting time T as the design parameter is equivalent to specifying the exceedance probability p since 

p=1/T (refer to Section 2). Then, the expressions in the columns for design quantile and risk of failure R, are written as  and R = 1-(1-

p)n, respectively. EWT, ENE and DLL denote, expected waiting time, expected number of events, and design life level, respectively.



Design methods under nonstationarity
(Salas, Obeysekera & Vogel, 2017)

Design 

Method

Primary 

Parameters

Return Period

T

Design Quantile zq0

(Return Level) 

Risk of Failure 

R Over Design 

Life n

Probability 

Distribution

EWT
T

T (specified)

Given T, find zq0 in 

Eq.(12)(1)

(12)
(14)(1)

Nonhomogeneous 

Geometric 

Distribution 

ENE = 1 n

Based on zq0 from 

Eq.(19a)

find p0 from  

Then from p0 find T0

Solve for zq0 in  

(19a)(1) (14)(1)

Poisson-Binomial 

Distribution

ENE = m

(m > 1)

n, m
Based on zq0 from 

Eq.(19b)

find p0 from  

Then from p0 find T0

Solve for zq0 in 

(19b)(1) (14)(1)

Poisson-Binomial 

Distribution

DLL
R, n

Find zq0 from Eq. (14)

find p0 from 

Then from p0 find T0

Given R find zq0 in Eq. 

(14)

(14)(1)

R (specified)

NHGD or 

Poisson-Binomial 

Distribution

AAR(n) n (27) Solve for zq0 in Eq. (27) Binomial

(1) Note that  (refer to Section 6.1)

In addition, note that if the EWT method is used for assessing a previously designed project where the design quantile zq0 is known (and the corresponding exceedance 

probability p0 and return period T0 ), then T can be determined from Equation (12) and R from Equation (14) without any numerical or trial and error calculations (refer 

to Section 6.1)



Other approaches (Salas, 
Obeysekera and Vogel 2017)

▪Regression: Conditional Moments  

▪Magnification Factors 

• Examples: LN2, LN3, GEV,  and LP3

▪Risk Based Decision Making (combine trend 
detection with hypothesis testing)

▪Time series modeling



DDF Curves using climate model data (bias 
corrected downscaled data from USBR)

Methods:

• Completely 

Parametric Method 

• Regional Frequency 

Analysis, RFA 

(similar to Atlas 14)

• At-Site RFA

• Unified GEV

• Constrained Scaling

➢ Bias is 

very 

large!

➢ Larger 

than delta 

change 



Where we are and challenges ahead

▪ The methods outlined here may form the basis for 
hydrologic designs considering nonstationarity

▪Detection of nonstationarity.  Perceived 
nonstationarity may actually be natural variability

▪Projections into the future:

• Climate Change. How do we use climate models for 
predicting future extremes? Are the ready?

• Land use changes and other anthropogenic changes

▪How do we incorporate the new techniques into 
standard practice? How do we deal with 
uncertainty? Adaptive Designs?
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Questions



“Nonstationary” Stochastic Models
ARMA

Consider say annual floods  xt LN distributed, and  

)log( tt x = y  where  yt ~ ),( 2

yN  .   

Let   )log( ttt xyz  where  zt ~ ),0( 2

yN  .  Then 

12211 )()(   ttttt   -  + - z  - z +  = z   

where  t ~ ),0( 2

N   (Note that 
2

  is related to 
2

y ) 

Stedinger and Griffis (2011) followed this procedure  

for the Mississippi annual floods at Hannibal. 





Extreme Precipitation (Cheng & 
AghaKouchak)



Stedinger & others; Singh & collaborators; Salas and Obeysekera,

Ouarda et al; Katz; Rootzen & Katz; Villarini & others; Parey;

Cooley; Vogel & collaborators; Frances & collaborators;

Serinaldi & Kilsby; Cancellieri & collaborators; Volpi:

Aghakouchak; and many many others


