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Introduction

* Recent evidence that dynamics of the hydrologic
cycle of river basins have been changing due to
human intervention and climate variability/change

= Number of articles arguing that the hydrological
processes have become nonstationary

= While a lot of controversy exists, significant
developments on methods have been made
(Olsen et al. 1998; Wigley 2009; many others)

= This presentation will provide information on the
potential approaches that could be used for
hydrologic designs considering nonstationarity and
discuss challenges ahead.
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-~ Example: Annual Maximum Floods,
- Assunpink Creek, NJ

# USGS 01464000 Assunpink Creek at Trenton NJ
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Example: Extreme (and Mean) Sea Levels
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Example: Sunny Day Flooding in South
Florida (2015)
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Example: Depth-Duration-Frequency of
extreme precipitation (NOAA Atlas 14)

PDS-based depth-duration-frequency (DDF) curves .
Latitude: 32.7817°, Longitude: -106.1747° White Sands Monument,NM (6 Hour)
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Nonstationarity Debate

“Nature’s Style: Naturally Trendy”, Cohn and Lins (2005)
“Stationarity is Dead” (Milly et al, 2008)
“Stationarity: Wanted Dead or Alive?” (Lins & Cohn, 2011)

“Comments on the Announced Death of Stationarity”
(Matalas, 2012)

“Negligent Killing of Stationary”
(Koutsoyiannis and Montanari, 2014)

“Stationarity is Immortal” (Montanari & Koutsoyiannis, 2014)
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Probabilistic Modeling of Annual
Extremes under Nonstationarity

= Two approaches: Block Maxima & Peaks
Over Threshold ( Coles, 2001)

* Most work uses GEV / GPD with parameters
linked to covariates

= Software: R packages (extRemes, gamlss)

= “Return Period” & Risk based on
« Expected Waiting Time (EWT)
« Expected Number of Events (ENT)
 Design Life Level (DLL)
» Average Annual Risk (AAR)



A brief review — Stationary Case
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Return Period as “Expected Waiting
Time”

aX = Waiting Time for the first occurrence of a
“flood” (a random variable)

f(x) = P(X=x) = (1-p)*'p x=1,2..

aThis iIs the well known Geometric Distribution for
Bernoulli Trials to get one success

QAExpected Value of X:
EX)=Yr1xf(x) =Y, x(1—p)~1p =

AT = Expected Waiting Time for the first occurrence
of the exceedance!

1_.
p



Nonstationarity — A New Paradigm
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Sea Level Rise Case
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Probability Distribution of Waiting Time
(Salas & Obeysekera, 2014 and others)

= Probability distribution of waiting time

f(x) = P|X = x] =_£1 —p)A —p2)(A —p3) ...(1 — Px_1)Dx

fo0) =pe| [A=p0 x=12.. with f1) = p,

t=1
* Non-homogeneous geometric (Mandelbaum et al.2007)
= CDF
X i—1

Fﬂx)—Zf(z)—zplZa P =1- ]_[a PO

i=1 t=1
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“Return Period” Under Nonstationary

= Return Period is defined as the “expected
time for the first exceedance (waiting time)”

00)

00 x—1
T = E[X] = z xf(x) = 2 XPx 1_[(1 — Pt)
x=1 t=1

x=1
= Coley (2013) provides a nice simplification:

X]—1+21_[<1 PO

x=1 t=

Note: Since p, is a function Z, (initial design or p,), this can also
be used to find Z, fora glven T
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Risk and Reliability Under Nonstationary

= Risk
n n x—1 n
R=) f0 =) p| [a-po=1-| [a-p
x=1 x=1 t=1 t=1
= Reliability:
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Specific Models

= For GEV:

— u(HO\17 V¢
p:=1—exp {— [1 + & (zqoa(ti)‘( )>] }

Modeling Non-stationarity
p(t) = Bo+ B1t; a(t) =0;5(t) =&

p(t) = Bo+ Pt + B2t% a(t) = 0;&(t) =&
p(t) = Bo + B1NINO3(t); o(t) =0;8(t) =&

u(t) = Bo + B1.-MSL(t); o(t) = 0;§(t) =¢
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Return Period Curve (Floods)
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Risk: Stationary versus Nonstationary

Nonstationary
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Nonstationary T
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Sea Level Trends in Key West, Florida
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Confidence Intervals of Design Quantiles
Nonstationary Case (obeysekera & Salas 2015)
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Frequency of Flooding under Non-
Stationarity (Obeysekera & Salas 2016)

* Frequency of flooding increases with time
Ii IR R R R 22 N

0 T

= Number of floods, N+, has Poisson Binomial
Distribution (Hong 2013) with the following

properties:
F, = subset
PMF: z 1_[191 1_[(1 o pJ oFkintegers
n A€Fk i€A JeAC From (1,2,..T)
E[Nr] = 2 pi Var(Np) = 2(1 — PiPi
J =1

Il
=

l
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Frequency of Flooding: Sea Level
extremes at Sewell Point
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Hydrologic Design Problem

Exceedance
Probability, p;

“‘Number of Events, m

A 4

Observations

[

Time ,t

t t

0
Design Life, n years "

« »
l >

X = Waiting Time, or

First Arrival Time of an Zq0 = Design Return Level (quantile)

event exceeding design R = Risk of one or more events
starting from t, T = Design Return Period
(X=1,2,3,.....)

Criteria: EWT, ENE, DLL, AAR
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Hydrologic Design considering

Nonstationarity
EWT > AAR: Design
/ for average p;
o | :
g B : Increasing exceedance :
: probabilities |
el | | )
g g ! I i . DLL: What level
< 3 ' '«  should we
s B P e
8 ) J ll . design to
= L ] . .
s 8- . 7 i maintain a
e ¥ . - i | P, specified risk
< o | e ..--0-. :g : _,.e-“”rfﬂ : (e.g. 5%)
S 1 eeltey . g,;i'-”’*:— :
N ‘._‘__.!%%- L™ .-. ] |
i{. .\. o ® }% Project Life, n ﬁ‘!
] I — | —
1950 2000 2050 2100 2150

ENE: What level should we design for if
we can tolerate, say m events over the life
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Desigh methods under stationarity (Salas
, Obeysekera & Vogel, 2017)

: : Risk of -

: : : Design Quantile : Probability
Design Primary Return Period 2. (Return Level) Failure R Distributio
Method | Parameters T d Over

. ) n
Design Life n
EWT® e . i
T T (specified) Solve for z, in R=1-(1-1/T)" | Geometric
ENE=1 np=1, p=1/n . . i
n P T Fr)] Solve for z, in R=1-(1-1/n)" | Binomial
ENE =m np=m, p=m/n : : :
n, m P _ D Solve forz,in |R=1-(1-m/n)"| Binomial
(m>1) T=n/m q
p=1-(1-R)! Geometric
DLL R Solveforz,in | R (specified
, N T=1/p olve for z, in (specified) or
Binomial
(MUNote that specifying average waiting time T as the design parameter is equivalent to specifying the exceedance probability p since
p=1/T (refer to Section 2). Then, the expressions in the columns for design quantile and risk of failure R, are writtenas and R = 1-(1-
p)", respectively. EWT, ENE and DLL denote, expected waiting time, expected number of events, and design life level, respectively.
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Designh methods under nonstationarity

(Salas, Obeysekera & Vogel, 2017)

Design Primary Return Period Design Quantile z, Elg(vzf’ I:Daaelérgrr? Probability
Method | Parameters T (Return Level) Life n Distribution
T Given T, find zy,in Nonhomogeneous
EWT T (specified) Eq.(12)® (14)0 Geometric
(12) Distribution
Based on z,, from _ _ o
ENE = 1 " Eq.(19a) Solve for zy,in Poisson-Binomial
find p, from (192)® (14)® Distribution
Then from p, find T,
Based on z,, from
ENE =m n,m Eq.(19b) Solve for zy,in Poisson-Binomial
(m>1) find p, from (19b)® (14)®D Distribution
Then from p, find T,
R n Find zy, from Eq. (14) Given R find zy4 in Eq. NHGD or
DLL ’ find p, from (14) R (specified) Poisson-Binomial
Then from p, find T, (14)® Distribution
AAR(N) n (27) Solve for zin Eq. (27) Binomial
@ Note that (refer to Section 6.1)
In addition, note that if the EWT method is used for assessing a previously designed project where the design quantile z, is known (and the corresponding exceedance
probability p, and return period T, ), then T can be determined from Equation (12) and R from Equation (14) without any numerical or trial and error calculations (refer
to Section 6.1)




Other approaches (Salas,

Obeysekera and Vogel 2017)

* Regression: Conditional Moments

= Magnification Factors
« Examples: LN2, LN3, GEV, and LP3

* Risk Based Decision Making (combine trend
detection with hypothesis testing)

= Time series modeling
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DDF Curves using climate model data (bias
corrected downscaled data from USBR)

NOAA Atlas 14 weather stations
and closest UBR BCSD5/BCCA grid cell centers
Arows beis FL Keys statiors (ebmnated from acabvss) to o 81 active

To e Methods:
« Completely
Parametric Method

Determination of Future
Intensity-Duration-Frequency Curves
for Level of Service Planning Projects

32

Extreme Rainfall Analysis in Climate Model Outputs to Determine
Temporal Changes in Intensity-Duration-Frequency Curves

30

\ - Regional Frequency
. éy Analysis, RFA
Vet

. gg:::;;s:‘% (similar to Atlas 14)
NOAA Atlas 14 Terls °t§ e At-Site RFA
{@ Precipitation-Frequency Atlas e 5. ;

-

i
Michelle

----- of the United States Un|f|ed GEV

e « Constrained Scaling

Perc | 24-hr_2-year 24-hr_S-year | 24-hr_10-year | 24-hr_25-year | 24-hr_50-year 24-hr_100- > Bias is
year very
5% -2.35(-57.4%) | -3.28(-59.6%) | -3.99 (-60.8%) -5(-62.3%) | -5.86(-63.3%) | -6.82 (-64.2%) |arge!
10% -2.33 (-57%) -3.25 (-59%) | -3.96 (-60.4%) | -4.94(-61.4%) | -5.76 (-62.1%) | -6.71 (-62.9%)
0% | 2250549%) | 3.1(:563%) | 3.76(:573%) | 4.67(-58.1%) | -5.45 (:58.7%) | -6.34 (:59.2%) > Larger
50% -2.25 (-54.9% -3.1 (-56.3% -3.76 (-57.3% -4.67 (-58.1% -5.45 (-538.7% -6.34 (-59.2%
than delta

90% | -2.19(-53.5%) | -3.05(-553%) | -3.66(-55.9%) | -4.53(-56.3%) | -5.24(-56.3%) | -6.01 (-55.8%) Change
95% | -2.16(-52.9%) | -3.03 (-54.7%) | -3.64 (-55.3%) | -4.43 (-54.7%) | -5.11(-54.5%) | -5.84 (-54.1%)




Where we are and challenges ahead

* The methods outlined here may form the basis for
hydrologic designs considering nonstationarity

= Detection of nonstationarity. Perceived
nonstationarity may actually be natural variability

= Projections into the future:

 Climate Change. How do we use climate models for
predicting future extremes? Are the ready?

« Land use changes and other anthropogenic changes

* How do we incorporate the new techniques into
standard practice? How do we deal with
uncertainty? Adaptive Designs?
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— Questions




“Nonstationary” Stochastic Models

ARMA

Consider say annual floods X; LN distributed, and

Yy, =log(X;) where ¥, ~ N(u.07).

Let Z, =Y, —u=log(X,) — 1 where Z, ~N(0,0,). Then
2 =put (2 - 1) +0,(2 - ) +e -08

where & ~N(0,67) (Note that o’ is related to o)

Stedinger and Giriffis (2011) followed this procedure

for the Mississippi annual floods at Hannibal.
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Location information:

Name: Alamogordo, New Mexico,
UsSA*

Station name: WHITE SANDS NATL
MON

Site ID: 29-9686
Latitude: 32.7817°
Longitude: -106.1747°
Elevation: 3995 ft

* Source: ESRI Maps
** Source: USGS




Extreme Precipitation (Cheng &
AghaKouchak)
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