Informatics		EPFL – ENAC – IIC – IMAC

Solution 5.2.3: Optimization, Search & Exploration

Solution 1

a. Manual verification of the proposed dimensions

Calculate the requested elements and geometries:

Calculate the deflection:

Calculate the moments:

Verification of the dimensions:

1. Serviceability

 ??

 ?? 	YES

2. Rigidity

 ??	YES

3. Constraints

 	YES

4. Cost

b. An example of a program written in Java is as follows:

SPGSLsimplebeam.java

import SPGSL.*; // importation of package containing the algorithm
import java.text.*;

public class SPGSLsimplebeam {

 static DecimalFormat df = new DecimalFormat();
 static int numVariables=3; // Specification of the number of variables

 /* create a class derived from the class Problem */
 public static class SampleProblem extends Problem {

 int numTrials;
 double b; // length of wooden section in m
 double d; // height of wooden section in m
 double e; // spacing m
 double Inertiay; // Inertia around the y-axis in m4
 double Eb = 1e7; // Youngs modulus in kN/m2
 double gamma = 5.0; // Volumetric weight of wood in kN/m3
 double CUb = 100; // Unit cost of wood in CHF per m3
 double L = 6; // Length of the beam in m
 double q = 4; // Uniform load in kN/m2
 double Length = 50; // Total length of cover
 double delta1= L/250; // Serviceability
 double delta2= L/350; // Rigidity
 double fyb = 1e4; //Yielding limit of wood in kN/m2
 double defweight; // deflection at half span due to self-weight
 	 double defload; /* deflection at half span due to a uniform
 load */
 double Momweight; // Moment at half span due to self-weight
 double Momload; /* Moment at half span due to a uniform
 load */
 double sigmamax; // Maximum constraints of the section
 double W; //Module inflection in m3
 int nbbeam; //Number of beams
 int nbspace; //Number of spaces

 //---

 // Constructing the class SampleProblem
 public SampleProblem(int numVars, long numEvaluations) {
	
 		super(numVars, numEvaluations);	/* call the construction of the
 parent class */
 this.numVars= numVars;
 // axis of the variable b
 axes[0] = new SPGSL.Axis(0, 0.24, 1e-2);
 // axis for the variable d
 axes[1] = new SPGSL.Axis(0, 0.3, 1e-2);
 // axis for the variable e
 axes[2] = new SPGSL.Axis(0.5, 3.0, 1e-2);
 this.threshold = -1000; /* threshold at which the solver stops*/
 }

 //---

 	 /* method used to give the final results of the algorithm */
 public void printFinalResult(){

 		b = this.bestPoint.x[0];
 d = this.bestPoint.x[1];
 e = this.bestPoint.x[2];

 		calculatemomentset(); /* method to calculate the efforts and
 deflection of the simple beam */
 nbspace = (int)(Length/e)+1;
 nbbeam = nbspace+1;

 		System.out.println("\n\n The best solution is when b = " +
 b + "\n and d = " +
 d+ "\n and e = " +
 e + "\n and the number of beams is = " + nbbeam + "\n and the cost is: " +
 		df.format(this.bestPoint.y) + "\n");

 		/* Post the levels of constraints and deflection by giving the
 acceptable limit values */
 System.out.println("Constraints max. allowable : " + fyb + "
 \tConstraints max. actual : " + sigmamax);

 System.out.println("Deflection max. allowable 1 : " + deltaamd1 +
 " \tDeflection max. actual 1 : " +
 (defweight + defload));

 System.out.println("Deflection max. allowable 2 : " + deltaamd2 +
 " \tDeflection max. actual 2 : " +
 (defload));
 }

 //---

 	 // Definition of the objection function
 public double costFunction(double []paramValues) {

 		b= paramValues[0];
 d= paramValues[1];
 e= paramValues[2];

 calculatemomentset (); /* method to calculate the efforts
 and deflection of the simple beam */
 double value =0;
 nbspace = (int)(Length/e)+1; // (+1 to avoid nbspace=0)
 nbbeam = nbspace+1; // calculate the number of beams
 value = b*d*L*CUb*nbbeam; // calculate the total cost

 // give a penalty if the criteria of serviceability is violated
 value += controserviceability();	

 // give a penalty if the criteria of rigidity 2 is violated
 value += controlrigidity();

 // give a penalty if the resistance criteria is violated
 value += controlresistance();

 value += controltheory1(); /* give a penalty if the criteria of
 respecting the theory is violated */
	
 numTrials++;
	
 /* Post the results of the evaluation */
 System.out.println("\t" + numTrials +"\tValue b : " +
 df.format(b) + "\tValue d : " + df.format(d)+
 "\t Price : " + df.format(value));
	 return value;
 }

 //---

 /* Method for calculating the efforts and deflection of the simple
 beam */

 public void calculatemomentset(){
 Inertiay= b*d*d*d/12;
 W = Inertiay/(d/2);
 defweight = 5*(b*d*gamma)*L*L*L*L/(384*Eb*Inertiay);
 defload = 5*(q*e)*L*L*L*L/(384*Eb*Inertiay);
 Momweight = (b*d*gamma)*L*L/8;
 Momload = (q*e)*L*L/8;
 sigmamax = (Momweight + Momload)/W;
 }

 //---

 // Method for controlling the criteria of serviceability
 public double controldeflection1(){
 if (defweight + defload > deltaamd1){
 double alpha = defweight + defload - deltaamd1;
 return 1e6*(1+alpha);
 }
 return 0.0;
 }

 //---

 	 // Method for the controlling the criteria of rigidity
 public double controldeflection2(){
 if (defload > deltaamd2){
 double alpha = defload -deltaamd2;
 return 1e6*(1+alpha);
 }
 return 0.0;
 }

 //---

 	 // Method for controlling the resistance criteria
 public double controlresistance(){
 if (sigmamax > fyb){
 double alpha = sigmamax - fyb;
 return 1e6*(1+alpha);
 }
 return 0.0;
 }

 //---

 // Method for controlling the criteria for respecting the theory is violated
 public double controltheory1(){
 if (d > L/10){
 double alpha = d-L/10;
 return 1e6*(1+alpha);
 }
 return 0.0;
 }
 }

 //--

public static void main (String[] args) throws Exception {

	 SPGSL spgsl = new SPGSL();
 /* Create a problem to optimise with numvariables and the number of
 maximum evaluations */
 SampleProblem problem = new SampleProblem(numVariables, 5000);
 spgsl.findMinimum(problem); // start the routine
 /* Post the best result for the obtained optimisation at the end of
 the routine */
 problem.printFinalResult();
 }

 	//--
}

c. The results for the optimization of the different situations are summarized below. The algorithm is used several times in order to study the diversity of the optimization results. The results of d and b are rounded to the nearest centimeter, and the cost is calculated with unrounded values. The maximum number of iterations was fixed at 5000.

	
	
	Optimal Solutions
	No. Of Beams
	Cost
	Active Cirteria

	Situat.
	L [m]
	b
[m]
	d
[m]
	e
[m]
	
	
[CHF]
	

	1
	6.0
	0.18
	0.30
	1.02
	50
	1614.4
	Rigidity

	
	6.0
	0.17
	0.30
	0.98
	52
	1614.7
	Rigidity

	
	6.0
	0.16
	0.30
	0.93
	55
	1613.3
	Rigidity

	
	6.0
	0.16
	0.30
	0.89
	57
	1613.8
	Rigidity

	
	6.0
	0.16
	0.30
	0.91
	56
	1612.4
	Rigidity

	
	
	
	
	
	
	
	

	2
	8.0
	0.24
	0.30
	0.58
	88
	5055.7
	Rigidity

	
	8.0
	0.23
	0.30
	0.55
	92
	5048.0
	Rigidity

	
	8.0
	0.23
	0.30
	0.56
	91
	5059.7
	Rigidity

	
	8.0
	0.22
	0.30
	0.54
	94
	5058.9
	Rigidity

	
	8.0
	0.24
	0.30
	0.57
	89
	5048.8
	Rigidity

	
	
	
	
	
	
	
	

	3
	10.0
	No allowable solution
	Violated constraints

	
	10.0
	No allowable solution
	Violated constraints

	
	10.0
	No allowable solution
	Violated constraints

	
	10.0
	No allowable solution
	Violated constraints

	
	10.0
	No allowable solution
	Violated constraints

Situation 1 where L=6m :
The optimum (global) has each beam at a height of 0.3m (the maximum possible) and several possible values exist for the width (0.16, 0.17 and 0.18). The solution with 50 beams and a spacing of 1.02m is preferred, as this gives the smallest number of beams.

Situation 2 where L=8m :
The optimum (global) has each beam at a height of 0.3m (the maximum possible) and several possible values exist for the width (0.22, 0.23 and 0.24). The solution with 88 beams and a spacing of 58cm is preferred, as this gives the smallest number of beams.

Situation 3 where L=10m :
No possible solutions exist as the constraints are always violated.

d. The comparison between the empirical solution given in a and the optimized solution can be seen below:

	Situation
	b [m]
	d [m]
	e [m]
	No. of beams
	Total Cost [CHF]

	Question 1a
	0.18
	0.3
	0.75
	69
	2235.6

	Question 1c
	0.18
	0.3
	1.02
	50
	1620.0

The difference is calculated as follows:

Solution 2

a. We often start with the Gradient Method, which allows the results to be obtained rapidly.

b. We can execute the method several times and compare results. For instance, if we use the Gradient Method, we have to choose a different starting point at each execution. If the function has several local minima, the Gradient Method gives different results. In such cases, the method is unreliable (for such functions).

c. If the optimization of a function can be carried out easily using a simpler technique (e.g. Gradient Method, differentiation).

d. In order to have exactly the same results,
· Start from the same seed. This seed controls the random aspect of PGSL.
· Have a sufficiently large number of iterations (with relation to convergence). The best number of iterations depends on the form of the objective function.

[bookmark: _GoBack]

Acknowledgements

Thanks to B.Raphael (author of PGSL), Y.Robert-Nicoud, S.Saitta, L.Rhode-Barbarigos, S.Korkmaz and E.Hofmans.

I.F.C.Smith, 2011
4

7

image2.wmf
1620.0

10.275427.5%

2235.6

Difference

=-=»

oleObject2.bin

image1.wmf
2235.6(1)1620.0

Difference

×-=

oleObject1.bin

