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Abstract: Identifying low-head dams (LHDs) and creating an inventory is a priority, as fatalities
continue to occur at these structures. Because obstruction inventories do not specifically identify
LHDs and they are not assigned a hazard classification, there is no official inventory of LHDs; a
multi-agency taskforce is creating one now by identifying LHDs using Google Earth Pro (GE Pro).
The purpose of this paper is to assess whether a machine learning approach can accelerate the creation
of the national inventory. We implemented a machine learning approach to use a high-resolution
remote sensing data with a Convolutional Neural Network (CNN) architecture. The model achieved
76% accuracy in identifying LHDs (true positives) and 95% accuracy identifying Non-low-head-dams
(true negatives) on the validation set. We deployed the trained model for the National Hydrologic
Geospatial Fabric (Hydrofabric) flowlines in the Provo River watershed. The results showed a high
number of false positives and low accuracy due to the mismatch between Hydrofabric flowlines and
actual waterways. We recommend improving the accuracies of the Hydrofabric waterway tracing
algorithms to increase the percentage of correctly classified LHDs.

Keywords: low-head dams; machine learning; deep learning; supervised learning; image classification;
submerged hydraulic jump; convolutional neural network

1. Introduction

Low-head dams (LHDs; Figure 1), also known as “drowning machines” [1], are defined
by the Federal Register [2] as a dam built across a stream, designed to continuously pass
flows from upstream to downstream over the entire width of the crest. One of the main
purposes of LHDs is to raise the water level upstream to divert water for irrigation and
other beneficial uses. LHDs not only affect stream connectivity [3], but, under specific
downstream conditions, can create dangerous currents just downstream from the crest,
known as a submerged hydraulic jump (SHJ) [4]. A SHJ (Figure 2) will occur when the
downstream tailwater depth (TW) is slightly greater than the sequent depth [5]. Submerged
hydraulic jumps are responsible for more than a thousand fatalities at LHDs across the
United States since 1950. Efforts have been made to create a low-head dam fatality database
to raise awareness of their potential dangerous conditions [6].

Edward Kern [6] describes the importance of creating a national inventory of low-head
dams to address standards and improve public safety. Similar to Kern [6], Januchowski-
Hartley [7] describes the importance of documenting the location of instream obstructions
to restore stream connectivity. LHDs are often overlooked by obstruction inventories
because they do not have a hazard classification and because they are under 1.8 m high.
Most of the United States’ 2.5 million dams are not under the jurisdiction of any public
agency, making it difficult to document ownership [8]. Some states explicitly exclude small
dams from the definition of an obstruction, stating that “A barrier is not considered a dam
if the height does not exceed 1.8 m (6 feet) regardless of storage capacity or if the storage
capacity at maximum storage volume does not exceed 18,500 cubic meters (15 acre-feet)
regardless of height” [9].
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Figure 1. Low-head dam at Provo River by Provo Canyon (Photo by Salvador Vinay). 
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Figure 2. Graphical description of a low-head dam with a submerged hydraulic jump. This graphic
was created by Wright Water Engineers and was presented at Dam Safety 1995, the 12th annual
conference of the Association of State Dam Safety Officials in Atlanta, GA, September.

A multi-agency taskforce is creating a national inventory of LHDs [10], focusing its
efforts on manual identification using Google Earth Pro (GE Pro). As fatalities continue to
occur, more and more private and federal organizations are joining the effort to create the
inventory. Figure 3 shows the inventory status, demonstrating that there is more work to be
done. Whittemore [11] mentions the great potential of fusing participatory manual efforts
for creating instream infrastructure inventories with Machine Learning (ML) approaches
that are faster than manual approaches, but require large training and testing datasets. With
the increase in data availability and computational power, the interest in ML applications
has increased, providing more examples and applications that are useful for this study [12].

The current GE Pro approach is time- and resource-intensive [10]. ML might provide
an alternative—and perhaps a faster and more efficient—way to locate LHDs in the United
States. The purpose of this paper is to assess whether an ML approach would accelerate
the process of creating a national inventory of LHDs.
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1.1. Background

Arthur Samuel [13] defined ML as a “field of study that gives computers the ability to
learn without being explicitly programmed”. Deep learning is a type of machine learning
(Figure 4) that is based on artificial neural networks and uses multiple layers of processing
to identity uniform features within images. Zhang [14] defined it as “the process not only
to learn the relation among two or more variables but also the knowledge that governs the
relation as well as the knowledge that makes sense of the relation”.
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Figure 4. Deep learning diagram.

Recent research has shown that Computational Neural Networks (CNN) allow com-
puters to identify and extract features from images, eliminating the task of developing a
feature extractor. Deep CNNs have recently substantially improved the state of the art in
image classification and other recognition tasks. CNNs were first introduced in the early
1990s, and the availability of larger data sets like ImageNet [15], better models, training
algorithms, and the availability of Graphic Processing Units (GPU) are some factors that
differentiate them from competing models in image classification [16,17].
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Deep CNNs greatly improved with the addition of more training data. When sufficient
training data are not available, synthetic transformations of the existing training data can
create more data for the training set [16,18].

1.2. Related Work

Recent efforts by Buchanan [19] on automating the process of identification of instream
network barriers by using Light Detection and Ranging (LIDAR) DEM 2-meter resolu-
tion data and a binary random forest classification algorithm show promising results in
identifying unmapped riverine dams. Data used by Buchanan [19] were limited to small
areas and are not available nationwide with the same level of spatial resolution, making
it difficult to apply that research to a larger scale. Similar work has been done by Swan
and Griffin [20] using a fusion of LIDAR and optical remote sensing data to identify and
measure impoundments and their dams, showing promising results, but identifying only
large dams greater than 5 m high.

Alshehhi [21] suggested the use of high-resolution imagery and a CNN for simultane-
ous extraction of roads and buildings; the work shows promising results for the creation of
road inventories and other large infrastructure. Similar work was performed by Saito [22]
using aerial imagery and CNN to predict multichannel images. Both Alshehhi [21] and
Saito [22] showed promising results using CNN and remote sensing data for supervised
image classification.

Similarly to the multi-agency taskforce GE Pro work, Yang [23] used Google Earth
Engine [24] (GEE) and its capability for accessing cloud-based global high-resolution
imagery to identify obstructions on rivers with a width greater than or equal to 30 m,
with the objective of creating a Global River Obstruction Dataset (GROD). The work by
Yang introduces GEE as a powerful tool for accessing high-resolution imagery and the
opportunity to scale any ML approach for identifying instream obstructions. Shelestov [25]
explored the efficiency of using GEE cloud-based resources to classify multi-temporal
satellite imagery with the potential to be applied to a larger scale. Results show good
performance on accessing GEE remote sensing data, but demonstrated that it is limited to
the employed classifiers, and was outperformed by a neural network-based approach.

2. Methods

The following steps were used in this study: (1) data preparation, (2) creation of
training and testing data, (3) model selection, (4) model training, (5) results and metrics,
and finally (6) model deployment.

2.1. Data Preparation

The three sources of data used in this study are available nationwide to allow for
eventual application to a larger scale: the National Agriculture Imagery Program (NAIP),
the Hydrofabric dataset (Hydrofabric), and GE Pro files (.KMZ) provided by the multi-
agency taskforce and from the state of Indiana.

The NAIP provides high-resolution imagery with spatial resolution ranging from
0.3 m to 1.0 m acquired during growing season with 4-band (RGBNIR) spectral resolution.
One of the main objectives of the NAIP is to make digital orthophotography available
to governmental agencies and the public within a year of acquisition. The NAIP is con-
stantly improving the spatial resolution of the nationwide digital orthophotography that is
available nationwide [26].

The Hydrofabric is a high-resolution dataset that represents the water drainage net-
work of the United States with features such as rivers, streams and canals [26]. We used
the Hydrofabric flowlines (polylines) feature in the preparation of training, testing, and
deployment data for our model.

GE Pro files (.KMZ) were provided by the multi-agency taskforce for Utah, Idaho,
and Wyoming [10]. The provided data have been quality-controlled by experienced
professionals. Additionally, the LHD inventory from Indiana was created by the Indi-
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ana Department of Natural Resources (IDNR) and was obtained from: (https://maps.
indiana.edu/previewMaps/Infrastructure/Dams_Low_Head_IDNR.html, accessed on
6 September 2022).

2.2. Creation of Training and Testing Data

We defined two classes for this study: Low-head dams (LHD) and Non-Low-head
dams (NLHD) (Figure 5).
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Figure 5. LHD and NLHD classes.

We selected 167 LHD locations for the LHD class testing from the data provided by
the multi-agency taskforce and the INDNR that best represented actual LHDs. The dataset
was processed with ArcGIS Pro (Figure 6). We adapted a python script that was created by
Gorelick [27] that connects with the high-volume GEE Application Programming Interface
(API) to extract the LHD image chips from the NAIP image collection.
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Figure 6. Processing KMZ files on ArcGIS Pro. (Created with ArcGIS Pro model builder).

For the creation of training data belonging to the NLHD class, we analyzed a
5-mile section of the Provo River in Utah to define what our model might encounter
as NLHDs: sections of the river without a low-head dam, sections with only vegetation
or with bridges, or urban areas. We selected sections of the NHD Plus that represented
the features mentioned, and the Utah Department of Transportation inventory of bridges
available on the ArcGIS Pro web services. The selected features were processed on ArcGIS
Pro (see Figures 6 and 7) and the image chips were extracted with the adapted Gorelick [27]
python script.
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The characteristics of the image chips include spectral resolution 3 (RGB), dimensions
of 128 × 128 pixels with a spatial resolution of 1.0 m, and a .png format.

https://maps.indiana.edu/previewMaps/Infrastructure/Dams_Low_Head_IDNR.html
https://maps.indiana.edu/previewMaps/Infrastructure/Dams_Low_Head_IDNR.html


Water 2023, 15, 676 6 of 11

Because the number of LHD locations available for this study was limited, we dealt
with a data imbalance problem: not enough LHD locations. We augmented the LHD data
using the following techniques [18] to artificially create training data: rotation range, width
shift range, height shift range, zoom range, and horizontal flip. An overview of the datasets
is displayed on Table 1.

Table 1. Overview of the datasets.

Dataset Training Testing

Low-head Dam 798 34
Non Low-head Dam 994 34

2.3. Model Selection

CNNs are considered the most efficient deep learning models for image classifica-
tion [28]. We employed a binary class prediction method with the use of a single CNN
architecture composed of two convolutional layers and two dense layers (Figure 8). We
used TensorFlow with keras API to build the CNN model. For the convolutional layers,
we used the following hyperparameters: stride with 1 × 1 size and padding as “valid”,
which drops the border of the images and makes them smaller from layer to layer, while
the “same” padding value would add a border of zeros to keep the image the same size.
We also implemented Max Pooling with a pool size of 2 × 2, which helps the CNN to
extract high-level features. Because we used padding as valid, the original size of the image
reduces from 128 × 128 to 126 × 126. Our feature map changes from layer to layer, but the
first feature map is size 126 × 126, and it reduces in size until we have a size 1 × 1 feature
map, as shown in Figure 8. We used Rectified Linear Unit [29] (Relu) and SoftMax [30] as
activation functions. The Relu activation function is a piecewise linear function that has
become a default for several neural networks, because it is easy to implement and achieves
better performance when training the model [31]. The SoftMax activation is a mathematical
function applied to the last output layer, which converts a vector of numbers into a vector
of probabilities to normalize the output into a probability distribution over the predicted
output classes.
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2.4. Model Training

We trained the CNN model using the training data by setting the epochs to 2000 with
early stopping [32] to avoid model overfitting. The early stopping was set up with the
monitor set to “validation accuracy”, a patience value of “5”, and restoring best weights
to “true”. We used a learning rate of 0.001. The training was performed on a Windows
11 Laptop with Intel Core 9 11th Gen and 16 GB of RAM; no GPU was used for model
training. About ten minutes of computer time was required.

2.5. Confusion Matrix and Metrics

The CNN model was used on the testing data and achieved an accuracy of 76% for
classifying LHDs and 95% accuracy classifying NLHDs (see Equation (1) and the confusion
matrix in Figure 9).

Accuracy =
True Positives

True Positives + False Positives
(1)
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2.6. Model Deployment

In this section of the paper, we describe the deployment of the trained CNN model for
two different areas of interest: Utah County using the Hydrofabric flowlines, and then the
Provo River watershed using both the Hydrofabric flowlines and flowlines delineated by
hand (hand-delineated).

2.6.1. Deployment of the CNN Model for Utah County

We first deployed the trained CNN model using the Utah County Hydrofabric flow-
lines (Figure 10) using a stream order of five. The flowlines consist of 182,006 images with
20 known LHD locations. The purpose of this experiment was to assess the accuracy of the
trained CNN model when deployed on a larger scale.

2.6.2. Deployment of the CNN Model on Provo River Watershed

We subsequently deployed the trained CNN model for the Provo River Watershed for
two cases. The first used the Hydrofabric flowlines and the second used hand-delineated
flowlines (Figure 11). The purpose of this experiment was to deploy the trained CNN
model into a smaller domain making possible the hand-delineation of the Provo River
watershed flowlines.
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3. Results
3.1. Utah County

The trained model was first deployed using the Utah County Hydrofabric flowlines
that produced 40,574 image chips. The model classified 615 images as LHDs, correctly
identifying 3 of 20 known LHD locations, leaving 612 images as false positives.
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3.2. Provo River Watershed

The Provo River watershed Hydrofabric approach resulted in 6156 image chips. The
model classified 132 images as LHDs and was able to correctly identify 3 of 21 LHD
locations correctly, leaving 129 images as false positives. The Provo River watershed hand-
delineated approach resulted in 6008 image chips. The model classified 196 images as
LHDs and was able to correctly identify 13 of 21 LHD locations, leaving 183 images as false
positives. Results are summarized in Table 2.

Table 2. Summary of the comparison between the Hydrofabric and the hand-delineated flowlines in
the Provo River watershed.

Flowline Type Number of Images Actual Number
of LHDs

Number of Images
Classified as LHDs

Number of
LHDs Identified

Number of
False Positive

Hydrofabric 6156 21 132 3 129
Hand-delineated 6008 21 196 13 183

4. Discussion of Results
4.1. Utah County

Using the Hydrofabric flowlines on the Utah County produced a high number of
false positives, leading to the Provo River watershed experiment to determine whether
the Hydrofabric flowlines on the high number of false positives and low percentage of
correctly classified LHD locations.

4.2. Provo River Watershed

Using the Hydrofabric flowlines for the Provo River watershed produced an unac-
ceptably high number of false positive LHD locations while correctly identifying less than
fifteen percent of the actual LHDs. Figure 12 demonstrates that the Hydrofabric flowlines
do not always coincide with waterways, and, as shown in the examples, most of the time
miss the locations of LHDs.
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On the other hand, the deployment of the CNN model using the hand-delineated
flowlines showed a reduced number of false positive images while correctly identifying
more than half of the actual LHDs. While the percentage of false positives using the
hand-delineated flowlines was higher than with the Hydrofabric (3 percent vs. 2.1 percent,
respectively), the low number of correctly identified LHDs using the Hydrofabric data
makes it impractical as a tool for accelerating the process of finding LHDs. More work with
the hand-delineated flowlines during testing will likely increase identification efficiency.

With these results, we were able to identify a major issue with the Hydrofabric flow-
lines that make the approach untenable for locating low-head dams: unacceptably high
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numbers of false positives and unacceptably low numbers of correct LHD identifications
due to the mismatch between the flowlines and actual waterways.

5. Conclusions/Recommendations

The objective of this paper was to assess whether an ML approach could accelerate the
process of creating a national inventory of LHDs. We trained, tested, and deployed a CNN
architecture that consisted of two convolutional neural networks and two dense layers. The
results of the testing of the model proves that CNN models trained with high-resolution
remote sensing data can correctly classify LHDs. On the other hand, the results of the
model deployment show that there are challenges that involve the correct identification
of LHDs. Some of these challenges are that LHDs can be covered by vegetation, they
can be constructed under other structures such as bridges, and they can be constructed
on ephemeral streams where water might not have been flowing at the time the image
was collected.

After performing the two experiments, we found that because the Hydrofabric flowlines
do not always coincide with waterways, a high number of false positives were classified by
the model, while a low percentage of actual LHD locations were correctly classified.

We recommend an improved Hydrofabric representation of flowlines, to better match
waterways, to increase the percentage of correctly classified LHDs. Additional work may
also be conducted to fine-tune the CNN model to achieve the highest accuracy possible.
Also, adding more LHDs to the training data and using hand-delineated flowlines, until
Hydrofabric accuracy is improved, will increase the accuracy of the CNN model.
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